关于 HiveSQL 常见的 Left Join 误区,你知道吗
写在前面
很多时候,你知道吗由于SQL逻辑复杂,关于加之对SQL执行逻辑理解不透彻,误区很容易产生一些莫名其妙的你知道吗结果,这些结果看似不符合预期,关于殊不知这就是误区真实结果。本文整理了几个常见的你知道吗SQL问题,我们在实际书写SQL脚本时,关于需要多加注意,误区希望本文对你有所帮助。你知道吗
关于LEFT JOIN
外连接是关于我们书写SQL时经常使用的多表连接方式,使用起来也是误区十分的简单。值得注意的你知道吗是,越是关于简单的东西,越是误区容易被忽略细节。通常我们都是这样理解LEFT JOIN的:
语义是满足Join on条件的直接返回,但不满足情况下,需要返回Left Outer Join的香港云服务器left 表所有列,同时右表的列全部填null
上述对于LEFT JOIN的理解是没有任何问题的,但是里面有一个误区:谓词下推。具体看下面的实例:
假设有如下的三张表:
--建表
create table t1(id int, value int) partitioned by (ds string);
create table t2(id int, value int) partitioned by (ds string);
create table t3(c1 int, c2 int, c3 int);
--数据装载,t1表
insert overwrite table t1 partition(ds=20220120) select 1,2022;
insert overwrite table t1 partition(ds=20220121) select 2,2022;
insert overwrite table t1 partition(ds=20220122) select 2,2022;
--数据装载,t2表
insert overwrite table t2 partition(ds=20220120) select 1,120;当我们执行如下的SQL查询时,会返回什么数据呢?
SELECT
*FROM t1
LEFT JOIN t2
ON t1.id = t2.id
AND t1.ds = 20220120
;结果1:
1 2022 20220120 1 120 20220120结果2:
1 2022 20220120 1 120 20220120
2 2022 20220121 NULL NULL NULL
1 2022 20220122 NULL NULL NULL相信对于很多初学者,甚至是一个有开发经验的人来说,会认为结果1是正确的返回结果。其实结果1的并不是正确的结果,真正的返回值是结果2.

是不是跟预期的结果不一致呢?很多初学者会认为上述查询SQL中AND t1.ds = 20220120会进行谓词下推,从而得到结果2。其实,源码库SQL本身的语义不是这样的,如果需要获取结果1的数据,正确的查询方式是下面这样:
--方式1:
SELECT
*FROM t1
LEFT OUTER JOIN t2
ON t1.id = t2.id
WHERE t1.ds = 20220120
;
--方式2:
SELECT
*FROM (
SELECT
*FROM t1
WHERE ds = 20220120
) t1
LEFT OUTER JOIN t2
ON t1.id = t2.id
;细心的你看出差异了吗?重点是在WHERE t1.ds = 20220120过滤条件上,最上面的查询方式是ON t1.ds = 20220120,所以按照LEFT JOIN的语义,如果没有过滤条件,那么左表的数据应该全部返回,右表匹配不上则补null。
执行计划
我们先来看看没有谓词下推的查询SQL的执行计划
正常LEFT JOIN
查看执行计划
EXPLAIN
SELECT
*FROM t1
LEFT JOIN t2
ON t1.id = t2.id
AND t1.ds = 20220120
;执行计划结果
hive> EXPLAIN
> SELECT
*> FROM t1
> LEFT JOIN t2
> ON t1.id = t2.id
> AND t1.ds = 20220120
> ;
OK
STAGE DEPENDENCIES:
Stage-4 is a root stage
Stage-3 depends on stages: Stage-4
Stage-0 depends on stages: Stage-3
STAGE PLANS:
Stage: Stage-4
Map Reduce Local Work
Alias -> Map Local Tables:
$hdt$_1:t2
Fetch Operator
limit: -1
Alias -> Map Local Operator Tree:
$hdt$_1:t2
TableScan
alias: t2
Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), value (type: int), ds (type: string)
outputColumnNames: _col0, _col1, _col2
Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
filter predicates:
0 {(_col2 = 20220120)}
1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Stage: Stage-3
Map Reduce
Map Operator Tree:
TableScan
alias: t1
Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), value (type: int), ds (type: string)
outputColumnNames: _col0, _col1, _col2
Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Left Outer Join0 to 1
filter predicates:
0 {(_col2 = 20220120)}
1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5
Statistics: Num rows: 3 Data size: 19 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 3 Data size: 19 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink从上面的执行计划可以看出:总共有3个stage,
STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3其中stage4是map任务读取t2表,将t2表加载成HashTable,用于map端join。t2表数据量为1行。
Select Operator expressions: id (type: int), value (type: int), ds (type: string) outputColumnNames: _col0, _col1, _col2 Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operatorstage3是map任务读取t1表数据并执行map端join。t1表数量为3行,可见并没有进行过滤操作。云服务器
Map Operator Tree:
TableScan
alias: t1
Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), value (type: int), ds (type: string)
outputColumnNames: _col0, _col1, _col2
Statistics: Num rows: 3 Data size: 18 Basic stats: COMPLETE Column stats: NONEStage-0进行结果输出,最终并未执行过滤操作。
Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink谓词下推的LEFT JOIN
查看执行计划EXPLAIN
SELECT
*FROM t1
LEFT OUTER JOIN t2
ON t1.id = t2.id
WHERE t1.ds = 20220120
;执行计划结果
STAGE DEPENDENCIES:
Stage-4 is a root stage
Stage-3 depends on stages: Stage-4
Stage-0 depends on stages: Stage-3
STAGE PLANS:
Stage: Stage-4
Map Reduce Local Work
Alias -> Map Local Tables:
$hdt$_1:t2
Fetch Operator
limit: -1
Alias -> Map Local Operator Tree:
$hdt$_1:t2
TableScan
alias: t2
Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), value (type: int), ds (type: string)
outputColumnNames: _col0, _col1, _col2
Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Stage: Stage-3
Map Reduce
Map Operator Tree:
TableScan
alias: t1
Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), value (type: int)
outputColumnNames: _col0, _col1
Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Left Outer Join0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col1, _col3, _col4, _col5
Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int), _col1 (type: int), 20220120 (type: string), _col3 (type: int), _col4 (type: int), _col5 (type: string)
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5
Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink从上面的执行计划可以看出:总共有3个stage,
STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3其中stage4是map任务读取t2表,将t2表加载成HashTable,用于map端join。t2表数据量为1行。
TableScan
alias: t2
Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), value (type: int), ds (type: string)
outputColumnNames: _col0, _col1, _col2
Statistics: Num rows: 1 Data size: 5 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operatorstage3是map任务读取t1表数据并执行map端join。t1表数量为1行,执行了过滤操作。
TableScan
alias: t1
Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), value (type: int)
outputColumnNames: _col0, _col1
Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Left Outer Join0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col1, _col3, _col4, _col5
Statistics: Num rows: 1 Data size: 6 Basic stats: COMPLETE Column stats: NONEStage-0进行结果输出,最终并未执行过操作。
Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink总结本文主要结合具体的使用示例,对HiveSQL的LEFT JOIN操作进行了详细解释。主要包括两种比较常见的LEFT JOIN方式,一种是正常的LEFT JOIN,也就是只包含ON条件,这种情况没有过滤操作,即左表的数据会全部返回。另一种方式是有谓词下推,即关联的时候使用了WHERE条件,这个时候会会对数据进行过滤。所以在写SQL的时候,尤其需要注意这些细节问题,以免出现意想不到的错误结果。
本文地址:http://www.bhae.cn/html/609e28099110.html
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。